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NOMENCLATURE 

2 specific heat; 
heat transfer coefficient: 

k, thermal conductivity; 

; 
one-half thickness of body; 

T: 
heat, energy ; 
tem~rat~re ; 

U, U, W, (T- T,)/{T, - T,), non-dimensional 
temperature; 

x, y, dimensional coordinates; 
X,YS coordinates, non-dimensionalized with L, and L,, 

respectively ; 
4 k/pc = thermal diffusivity ; 
8, CX/L’ = non-dimensional time; 
P? density ; 
5. dimensional time. 

Subscripts 

0, initial ; 
1, body 1; 
2, body 2; 
X,, fluid. 

THE TEMPERATURE response charts, such as those given by 
Heisler [l] are useful for the rapid and accurate calculation of 
the temperature history of a heated or cooled body. Even 
today with computer programs available for solving almost 
any kind of heat conduction problem, the charts retain their 
usefulness. They can be found in most undergraduate heat 
transfer texts, such as in Kreith [Z] and Holman [3], or in 
more extensive forms in Schneider [4]. Charts are usually 
given for the semi-infinite slab, the infinite plate, the infinite 
cylinder and the sphere, for constant temperature and 
convective boundary conditions. 

Once the transient temperature distribution is known it is a 
relatively easy matter to calculate the total heat transfer from 
(to) the body. For the case of the infinite plate extending in the 
y-direction and 2L, wide in the x-direction, this can be done 
by evaluating the heat transfer at the faces and integrating 
with respect to time, 8. Alternately, the total heat transfer 
can be found by calculating the stored internal energy of the 
plate at time, 8, and subtracting it from the original stored 
energy. The latter procedure yields 

e=,_ 1 

Qo i o ’ dx’ 
where u is the non-dimensional temperature distribution in 
the plate at time 0; Q is the total heat transferred from (to) the 
plate per unit area from B = 0 to @ = 8; Q. = iL;pc, 
(T, - T,) is the initial energy per unit area of plate, relative 
to the fluid tem~rature, T,. 

Values of Q/Q,, were first presented in chart form by 
Griiber et al. [5] for simple shapes and can be found in 
standard heat transfer texts [Z, 31. Thus by using these charts, 
one can quickly answer the question: how long does one 
have to wait for a certain fraction of theinternal energy of the _. 
body to be transferred to the fluid? 

As was first shown bv Berzer f61 and Newman f71. 
solutions for the temperature d%tribuiion in 2- and 3-&m. 
shapes can be obtained from l-dim. solutions by simple 
multiplication. For instance the temperature distribution in 
an infinite bar, 2L, wide in the x-direction and 2L, wide in the 
y-direction can be calculated by 

W = l4v (2) 

where w = w(x,y,B) is the non-dimensional temperature at 
any point in the bar. In the product, ur, u = u(x,@) is the 
solution for temperature in an infinite plate 2L, wide and 
extending in the y-direction and L’ = t$y, 8) is the solution for 
an infinite plate 2L, wide and extending in the x-direction. 
The intersection of the two plates form the infinite bar, with 
the point x = 0, y = 0 at the center of the bar. 

The temperature of a 3-dim. rectangular body (e.g. a brick) 
could be calculated by intersecting three infinite plates and 
taking the product of the three temperatures. Use of tempera- 
ture response charts for other shapes would yield the 
temperature history in finite cylinders, quarter infinite spaces, 
etc. 

It is the purpose of this paper to show how the use of the 
heat transfer charts for a l-dim. body can be extended to 2- 
and 3-dim. bodies, just as has been done for the case of the 
temperature distribution [i.e. equation (2)]. 

PROOF 

The 2-dim. infinite bar, 2L, by 2LZ, will be used as an 
example. Following the same reasoning as was used to arrive 
at (I), the heat transferred from the rod in time 0 can be 
written as 

& = 1 - 
! ! 

” o M’ dx dq’ 

where x and y have been normalized by L, and L, re- 
spectively, and Q and Q0 are defined as in (I), except they are 
each based on a unit length of the bar. 

The temperature w = w(x,y,Q) is given by equation (2) so 
that (3) can be rewritten as 

I’ dy (4) 

since u is independent of y and I’ is independent of x. 
Combining (1) for both s and y with equation (4) yields an 
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expression for the heat transfer from the bar in terms of l-dim. 
chart solutions, and is given as 

Equation (5) for heat transfer is the counterpart of equation 
(2) for the 2-dim. temperature distribution. 

An expression for Q/Q,, for a 3-dim. body can be derived in 
the same way as was done to get (5). For a rectangular solid 
(e.g. a brick). 2L, by 2L, by 2L,, it can be shown that 

Of course equations (5) and (6) are also applicable to other 
shapes, such as a finite cylinder formed by the intersection of 
an infinite piate and an infinite cylinder. One needs only to 
use the appropriate l-dim. chart to get values to put into 
equation (5) or (6). 

EXAMPLE 

As an example of the use of equation (5), consider a very 
long aluminum (k = 236 w/mC”, G( = 97.5 x 10e6 ml/s) rec- 
tangular bar that has the cross-sectional dimensions 2L, 
= 0.2 m in the x-direction and 2Lz = 0.1 m in the y-direction. 
Initially the bar is at a uniform temperature T,. Then at time 
t = 0, the bar is convectively cooled with a fluid at T, and 
heat transfer coefficients hi = 236 w/m’C” at X = k 0.1 m 
and h, = 94.4 w/m? at Y = k 0.05 m. How long does it 
take for the bar to lose one-half of its internal energy relative 
to the fluid temperature? 

From equation (5) it is seen that 

must be solved by trial-and-error. From equation (7) it is seen 
by inspection that the values of (Q/Q,,)], and (Q/Qo)12 will 
both be smaller that 0.5. Both of the l-dim. bodies will cool 
more slowly (i.e. have a lower value of (Q/Q,,) for the same 
time t) than the 2-dim. bar, since the latter has a higher 
surface-to-volume ratio. 

By using the appropriate Biot numbers for each infinite 
plate and choosing a value of dimensional time 5 (equal in 
both plates), values of (Q/Q”)], and (Q/Q& can be read from 
l-dim. chart [2,3], until equation (7) is satisfied. By trial-and- 
error, this results in 

Q 
- = 0.32, ; = 0.26, 
Q 0 1 0 2 

yielding a cooling time of r = 6.5 min for half of the internal 
energy of the bar to be transferred to the fluid. Had the 
question to be answered been one of calculating the heat 
transferred given a cooling time, the calculation would be 
straightforward, with no trial-and-error solution required. 

CONCLUSIONS 

The transient temperature distribution in multidimen- 
sional bodies can frequently be computed very simply by 
multiplying together appropriate l-dim. transient solutions. 
In this paper this technique has been extended to include the 
calculation of heat transfer to or from a multidimensional 
body using l-dim. solutions and either equation (5) or (6). 
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